Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34.811
1.
J Cancer Res Clin Oncol ; 150(5): 244, 2024 May 08.
Article En | MEDLINE | ID: mdl-38717526

PURPOSE: Cystatin SA (CST2) belongs to the superfamily of cysteine protease inhibitors. Emerging research indicates that CST2 is often dysregulated across various cancers. Its role and molecular mechanisms in gastric cancer remain underexplored. This study aims to explore the expression and function of CST2 in gastric cancer. METHODS: CST2 expression was analyzed and validated through Western blot. CST2 overexpression was induced by lentivirus in GC cells, and the correlation between CST2 expression levels and downstream signaling pathways was assessed. In addition, multiple assays, including cell proliferation, colony formation, wound-healing, and transwell migration/invasion, were considered to ascertain the influence of CST2 overexpression on gastric cancer. The cell cycle and apoptosis were detected by flow cytometry. RESULTS: CST2 expression at the protein level was decreased to be reduced in both gastric cancer tissues and cell lines, and CST2 expression attenuate gastric cancer growth, an effect restricted to gastric cancer cells and absent in gastric epithelial GES-1 cells. Furthermore, CST2 was demonstrated to improve chemosensitivity to Oxaliplatin in gastric cancer cells through the PI3K/AKT signaling pathway. CONCLUSION: These findings indicate that CST2 is downregulated at the protein level in gastric cancer tissues and cell lines. Additionally, CST2 was found to attenuate the growth of gastric cancer cells and to enhance sensitivity to Oxaliplatin through the PI3K/AKT signaling pathway, specific to gastric cancer cell lines. CST2 may serve as a tumor suppressor gene increasing sensitivity to Oxaliplatin in gastric cancer.


Cell Proliferation , Oxaliplatin , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Stomach Neoplasms , Stomach Neoplasms/pathology , Stomach Neoplasms/drug therapy , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Oxaliplatin/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Salivary Cystatins/metabolism , Salivary Cystatins/genetics , Apoptosis/drug effects , Drug Resistance, Neoplasm , Cell Movement/drug effects
2.
Cells ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38727264

Natural killer (NK) cells can migrate quickly to the tumor site to exert cytotoxic effects on tumors, and some chemokines, including CXCL8, CXCL10 or and CXCL12, can regulate the migration of NK cells. Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is highly expressed in tumor tissues and involved in tumor development and immune cell activation. In this study, we focus on the effects of activin A on NK cell migration. In vitro, activin A induced NK cell migration and invasion, promoted cell polarization and inhibited cell adhesion. Moreover, activin A increased Ca2+, p-SMAD3 and p-AKT levels in NK cells. An AKT inhibitor and Ca2+ chelator partially blocked activin A-induced NK cell migration. In vivo, exogenous activin A increased tumor-infiltrating NK cells in NS-1 cell solid tumors and inhibited tumor growth, and blocking endogenous activin A with anti-activin A antibody reduced tumor-infiltrating NK cells in 4T-1 cell solid tumors. These results suggest that activin A induces NK cell migration through AKT signaling and calcium signaling and may enhance the antitumor effect of NK cells by increasing tumor-infiltrating NK cells.


Activins , Calcium Signaling , Cell Movement , Killer Cells, Natural , Proto-Oncogene Proteins c-akt , Activins/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/immunology , Animals , Cell Movement/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Mice , Calcium Signaling/drug effects , Cell Line, Tumor , Mice, Inbred C57BL
3.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727301

Liver fibrosis, characterized by excessive extracellular matrix (ECM) deposition, can progress to cirrhosis and increases the risk of liver cancer. Hepatic stellate cells (HSCs) play a pivotal role in fibrosis progression, transitioning from a quiescent to activated state upon liver injury, wherein they proliferate, migrate, and produce ECM. Calcium signaling, involving the inositol 1,4,5-trisphosphate receptor (IP3R), regulates HSC activation. This study investigated the efficacy of a novel IP3R inhibitor, desmethylxestospongin B (dmXeB), in preventing HSC activation. Freshly isolated rat HSCs were activated in vitro in the presence of varying dmXeB concentrations. The dmXeB effectively inhibited HSC proliferation, migration, and expression of fibrosis markers without toxicity to the primary rat hepatocytes or human liver organoids. Furthermore, dmXeB preserved the quiescent phenotype of HSCs marked by retained vitamin A storage. Mechanistically, dmXeB suppressed mitochondrial respiration in activated HSCs while enhancing glycolytic activity. Notably, methyl pyruvate, dimethyl α-ketoglutarate, and nucleoside supplementation all individually restored HSC proliferation despite dmXeB treatment. Overall, dmXeB demonstrates promising anti-fibrotic effects by inhibiting HSC activation via IP3R antagonism without adverse effects on other liver cells. These findings highlight dmXeB as a potential therapeutic agent for liver fibrosis treatment, offering a targeted approach to mitigate liver fibrosis progression and its associated complications.


Cell Proliferation , Hepatic Stellate Cells , Inositol 1,4,5-Trisphosphate Receptors , Liver Cirrhosis , Animals , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Inositol 1,4,5-Trisphosphate Receptors/antagonists & inhibitors , Rats , Humans , Cell Proliferation/drug effects , Male , Rats, Sprague-Dawley , Cell Movement/drug effects
4.
Cells ; 13(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38727307

Tumor necrosis factor-α-induced protein 8-like 3 (TNFAIP8L3 or TIPE3) functions as a transfer protein for lipid second messengers. TIPE3 is highly upregulated in several human cancers and has been established to significantly promote tumor cell proliferation, migration, and invasion and inhibit the apoptosis of cancer cells. Thus, inhibiting the function of TIPE3 is expected to be an effective strategy against cancer. The advancement of artificial intelligence (AI)-driven drug development has recently invigorated research in anti-cancer drug development. In this work, we incorporated DFCNN, Autodock Vina docking, DeepBindBC, MD, and metadynamics to efficiently identify inhibitors of TIPE3 from a ZINC compound dataset. Six potential candidates were selected for further experimental study to validate their anti-tumor activity. Among these, three small-molecule compounds (K784-8160, E745-0011, and 7238-1516) showed significant anti-tumor activity in vitro, leading to reduced tumor cell viability, proliferation, and migration and enhanced apoptotic tumor cell death. Notably, E745-0011 and 7238-1516 exhibited selective cytotoxicity toward tumor cells with high TIPE3 expression while having little or no effect on normal human cells or tumor cells with low TIPE3 expression. A molecular docking analysis further supported their interactions with TIPE3, highlighting hydrophobic interactions and their shared interaction residues and offering insights for designing more effective inhibitors. Taken together, this work demonstrates the feasibility of incorporating deep learning and MD simulations in virtual drug screening and provides inhibitors with significant potential for anti-cancer drug development against TIPE3-.


Cell Proliferation , Deep Learning , Intracellular Signaling Peptides and Proteins , Molecular Docking Simulation , Humans , Cell Proliferation/drug effects , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Cell Line, Tumor , Cell Movement/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology
5.
Sci Rep ; 14(1): 10642, 2024 05 09.
Article En | MEDLINE | ID: mdl-38724565

Colorectal cancer (CRC) often necessitates cetuximab (an EGFR-targeting monoclonal antibody) for treatment. Despite its clinical utility, the specific operative mechanism of cetuximab remains elusive. This research investigated the influence of PLCB3, a potential CRC oncogene, on cetuximab treatment. We extracted differentially expressed genes from the GSE140973, the overlapping genes combined with 151 Wnt/ß-Catenin signaling pathway-related genes were identified. Then, we conducted bioinformatics analysis to pinpoint the hub gene. Subsequently, we investigated the clinical expression characteristics of this hub gene, through cell experimental, scrutinized the impact of cetuximab and PLCB3 on CRC cellular progression. The study identified 26 overlapping genes. High expression of PLCB3, correlated with poorer prognosis. PLCB3 emerged as a significant oncogene associated with patient prognosis. In vitro tests revealed that cetuximab exerted a cytotoxic effect on CRC cells, with PLCB3 knockdown inhibiting CRC cell progression. Furthermore, cetuximab treatment led to a reduction in both ß-catenin and PLCB3 expression, while simultaneously augmenting E-cadherin expression. These findings revealed PLCB3 promoted cetuximab inhibition on Wnt/ß-catenin signaling. Finally, simultaneous application of cetuximab with a Wnt activator (IM12) and PLCB3 demonstrated inhibited CRC proliferation, migration, and invasion. The study emphasized the pivotal role of PLCB3 in CRC and its potential to enhance the efficacy of cetuximab treatment. Furthermore, cetuximab suppressed Wnt/ß-catenin pathway to modulate PLCB3 expression, thus inhibiting colorectal cancer progression. This study offered fresh perspectives on cetuximab mechanism in CRC.


Cell Proliferation , Cetuximab , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Wnt Signaling Pathway , beta Catenin , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Cetuximab/pharmacology , Wnt Signaling Pathway/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Cell Proliferation/drug effects , beta Catenin/metabolism , beta Catenin/genetics , Cell Line, Tumor , Cell Movement/drug effects , Prognosis , Antineoplastic Agents, Immunological/pharmacology
6.
BMC Pulm Med ; 24(1): 229, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730387

BACKGROUND: Since COVID-19 became a global epidemic disease in 2019, pulmonary fibrosis (PF) has become more prevalent among persons with severe infections, with IPF being the most prevalent form. In traditional Chinese medicine, various disorders are treated using Sinomenine (SIN). The SIN's strategy for PF defense is unclear. METHODS: Bleomycin (BLM) was used to induce PF, after which inflammatory factors, lung histological alterations, and the TGF-/Smad signaling pathway were assessed. By administering various dosages of SIN and the TGF- receptor inhibitor SB-431,542 to human embryonic lung fibroblasts (HFL-1) and A549 cells, we were able to examine proliferation and migration as well as the signaling molecules implicated in Epithelial-Mesenchymal Transition (EMT) and Extra-Cellular Matrix (ECM). RESULTS: In vivo, SIN reduced the pathological changes in the lung tissue induced by BLM, reduced the abnormal expression of inflammatory cytokines, and improved the weight and survival rate of mice. In vitro, SIN inhibited the migration and proliferation by inhibiting TGF-ß1/Smad3, PI3K/Akt, and NF-κB pathways, prevented the myofibroblasts (FMT) of HFL-1, reversed the EMT of A549 cells, restored the balance of matrix metalloenzymes, and reduced the expression of ECM proteins. CONCLUSION: SIN attenuated PF by down-regulating TGF-ß/Smad3, PI3K/Akt, and NF-κB signaling pathways, being a potential effective drug in the treatment of PF.


Bleomycin , Down-Regulation , Morphinans , NF-kappa B , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Pulmonary Fibrosis , Signal Transduction , Smad3 Protein , Transforming Growth Factor beta1 , Animals , Morphinans/pharmacology , Morphinans/therapeutic use , Mice , Signal Transduction/drug effects , Humans , Transforming Growth Factor beta1/metabolism , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/metabolism , Smad3 Protein/metabolism , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Epithelial-Mesenchymal Transition/drug effects , A549 Cells , Cell Proliferation/drug effects , Disease Models, Animal , Male , Mice, Inbred C57BL , Lung/pathology , Lung/drug effects , Cell Movement/drug effects
7.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732030

Melanoma, the deadliest type of skin cancer, has a high propensity to metastasize to other organs, including the brain, lymph nodes, lungs, and bones. While progress has been made in managing melanoma with targeted and immune therapies, many patients do not benefit from these current treatment modalities. Tumor cell migration is the initial step for invasion and metastasis. A better understanding of the molecular mechanisms underlying metastasis is crucial for developing therapeutic strategies for metastatic diseases, including melanoma. The cell adhesion molecule L1CAM (CD171, in short L1) is upregulated in many human cancers, enhancing tumor cell migration. Earlier studies showed that the small-molecule antagonistic mimetics of L1 suppress glioblastoma cell migration in vitro. This study aims to evaluate if L1 mimetic antagonists can inhibit melanoma cell migration in vitro and in vivo. We showed that two antagonistic mimetics of L1, anagrelide and 2-hydroxy-5-fluoropyrimidine (2H5F), reduced melanoma cell migration in vitro. In in vivo allograft studies, only 2H5F-treated female mice showed a decrease in tumor volume.


Cell Movement , Melanoma , Neural Cell Adhesion Molecule L1 , Cell Movement/drug effects , Animals , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mice , Neural Cell Adhesion Molecule L1/metabolism , Cell Line, Tumor , Female , Xenograft Model Antitumor Assays , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Pyrimidines/pharmacology
8.
Int J Mol Sci ; 25(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38732063

Epidermal growth factor receptor (EGFR)-mutant non-small-cell lung cancer (NSCLC) patients treated with EGFR-tyrosine kinase inhibitors (TKIs) inevitably develop resistance through several biological mechanisms. However, little is known on the molecular mechanisms underlying acquired resistance to suboptimal EGFR-TKI doses, due to pharmacodynamics leading to inadequate drug exposure. To evaluate the effects of suboptimal EGFR-TKI exposure on resistance in NSCLC, we obtained HCC827 and PC9 cell lines resistant to suboptimal fixed and intermittent doses of gefitinib and compared them to cells exposed to higher doses of the drug. We analyzed the differences in terms of EGFR signaling activation and the expression of epithelial-mesenchymal transition (EMT) markers, whole transcriptomes byRNA sequencing, and cell motility. We observed that the exposure to low doses of gefitinib more frequently induced a partial EMT associated with an induced migratory ability, and an enhanced transcription of cancer stem cell markers, particularly in the HCC827 gefitinib-resistant cells. Finally, the HCC827 gefitinib-resistant cells showed increased secretion of the EMT inducer transforming growth factor (TGF)-ß1, whose inhibition was able to partially restore gefitinib sensitivity. These data provide evidence that different levels of exposure to EGFR-TKIs in tumor masses might promote different mechanisms of acquired resistance.


Carcinoma, Non-Small-Cell Lung , Cell Movement , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , ErbB Receptors , Gefitinib , Lung Neoplasms , Protein Kinase Inhibitors , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Gefitinib/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Transforming Growth Factor beta1/metabolism
9.
J Ovarian Res ; 17(1): 101, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745186

BACKGROUND: Shikonin (SK), a naphthoquinone with anti-tumor effects, has been found to decrease production of tumor-associated exosomes (exo). This study aims to verify the treatment effect of SK on ovarian cancer (OC) cells, especially on the production of exo and their subsequent effect on macrophage polarization. METHODS: OC cells SKOV3 and A2780 were treated with SK. The exo were isolated from OC cells with or without SK treatment, termed OC exo and SK OC exo, respectively. These exo were used to treat PMA-induced THP-1 cells (M0 macrophages). M2 polarization of macrophages was determined by measuring the M2 specific cell surface markers CD163 and CD206 as well as the secretion of M2 cytokine IL-10. The functions of galectin 3 (LGALS3/GAL3) and ß-catenin in macrophage polarization were determined by gain- or loss-of-function assays. CB-17 SCID mice were subcutaneously injected with SKOV3 cells to generate xenograft tumors, followed by OC exo or SK OC exo treatment for in vivo experiments. RESULTS: SK suppressed viability, migration and invasion, and apoptosis resistance of OC cells in vitro. Compared to OC exo, SK OC exo reduced the M2 polarization of macrophages. Regarding the mechanism, SK reduced exo production in cancer cells, and it decreased the protein level of GAL3 in exo and recipient macrophages, leading to decreased ß-catenin activation. M2 polarization of macrophages was restored by LGALS3 overexpression but decreased again by the ß-catenin inhibitor FH535. Compared to OC exo, the SK OC exo treatment reduced the xenograft tumor growth in mice, and it decreased the M2 macrophage infiltration within tumor tissues. CONCLUSION: This study suggests that SK reduces M2 macrophage population in OC by repressing exo production and blocking exosomal GAL3-mediated ß-catenin activation.


Exosomes , Galectin 3 , Macrophages , Naphthoquinones , Ovarian Neoplasms , beta Catenin , Naphthoquinones/pharmacology , Naphthoquinones/therapeutic use , Female , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Humans , Exosomes/metabolism , Animals , Macrophages/metabolism , Macrophages/drug effects , beta Catenin/metabolism , Galectin 3/metabolism , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Cell Movement/drug effects , Apoptosis/drug effects , Mice, SCID
10.
Drug Dev Res ; 85(3): e22195, 2024 May.
Article En | MEDLINE | ID: mdl-38704831

We investigated the angiogenesis-modulating ability of noscapine in vitro using osteosarcoma cell line (MG-63) and in vivo using a zebrafish model. MTT assay and the scratch wound healing assay were performed on the osteosarcoma cell line (MG-63) to analyze the cytotoxic effect and antimigrative ability of noscapine, respectively. We also observed the antiangiogenic ability of noscapine on zebrafish embryos by analyzing the blood vessels namely the dorsal aorta, and intersegmental vessels development at 24, 48, and 72 h postfertilization. Real-time polymerase chain reaction was used to analyze the hypoxia signaling molecules' gene expression in MG-63 cells and zebrafish embryos. The findings from the scratch wound healing demonstrated that noscapine stopped MG-63 cancer cells from migrating under both hypoxia and normoxia. Blood vessel development and the heart rate in zebrafish embryos were significantly reduced by noscapine under both hypoxia and normoxia which showed the hemodynamics impact of noscapine. Noscapine also downregulated the cobalt chloride (CoCl2) induced hypoxic signaling molecules' gene expression in MG-63 cells and zebrafish embryos. Therefore, noscapine may prevent MG-63 cancer cells from proliferating and migrating, as well as decrease the formation of new vessels and the production of growth factors linked to angiogenesis in vivo under both normoxic and hypoxic conditions.


Hemodynamics , Neovascularization, Pathologic , Noscapine , Zebrafish , Animals , Humans , Noscapine/pharmacology , Cell Line, Tumor , Hemodynamics/drug effects , Neovascularization, Pathologic/drug therapy , Angiogenesis Inhibitors/pharmacology , Hypoxia , Cell Movement/drug effects , Embryo, Nonmammalian/drug effects , Osteosarcoma/drug therapy , Angiogenesis
11.
AAPS PharmSciTech ; 25(5): 104, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724836

Salinomycin (Sal) has been recently discovered as a novel chemotherapeutic agent against various cancers including prostate cancer which is one of the most commonly diagnosed cancers affecting male populations worldwide. Herein we designed salinomycin nanocarrier (Sal-NPs) to extend its systemic circulation and to increase its anticancer potential. Prepared nanoform showed high encapsulation and sustained release profile for salinomycin. The present study elucidated the cytotoxicity and mechanism of apoptotic cell death of Sal-NPs against prostate cancer both in vitro and in vivo. At all measured concentrations, Sal-NPs showed more significant cytotoxicity to DU145 and PC3 cells than Sal alone. This effect was mediated by apoptosis, as confirmed by ROS generation, loss of MMP and cell cycle arrest at the G1 phase in both cells. Sal-NPs efficiently inhibited migration of PC3 and DU145 cells via effectively downregulating the epithelial mesenchymal transition. Also, the results confirmed that Sal-NPs can effectively inhibit the induction of Prostate adenocarcinoma in male Wistar rats. Sal-NPs treatment exhibited a decrease in tumour sizes, a reduction in prostate weight, and an increase in body weight, which suggests that Sal-NPs is more effective than salinomycin alone. Our results suggest that the molecular mechanism underlying the Sal-NPs anticancer effect may lead to the development of a potential therapeutic strategy for treating prostate adenocarcinoma.


Adenocarcinoma , Antineoplastic Agents , Apoptosis , Drug Carriers , Epithelial-Mesenchymal Transition , Nanoparticles , Prostatic Neoplasms , Pyrans , Rats, Wistar , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Animals , Pyrans/pharmacology , Pyrans/administration & dosage , Apoptosis/drug effects , Humans , Rats , Cell Line, Tumor , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Drug Carriers/chemistry , Nanoparticles/chemistry , Epithelial-Mesenchymal Transition/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/administration & dosage , Cell Movement/drug effects , PC-3 Cells , Drug Delivery Systems/methods , Polyether Polyketides
12.
Integr Cancer Ther ; 23: 15347354241253846, 2024.
Article En | MEDLINE | ID: mdl-38721848

Vikil 20 is an herbal formula produced in Ghana and is widely marketed as a product to boost immunity as well as for general well-being. However, the pharmacological effect of this herbal preparation has not been proven scientifically. Therefore, this study was aimed at investigating the antioxidative as well as the anti-prostate cancer effects of the product. To assess the antioxidative effect of Vikil 20, the DPPH and ABTS activities were investigated. The total phenolic content was investigated using the Folin-Ciocalteu method. The cytotoxic effect of Vikil 20 against prostate cancer (PC-3) cells as well as normal (RAW 264.7) cells was investigated using the MTT assay whereas its anti-metastatic effect was analyzed using the cell migration assay. The effect of Vikil 20 on cell adhesion was analyzed via the cell adhesion assay whereas its effect on TNF-α secretion was investigated using a TNF-α detection kit. Vikil 20 demonstrated significant antioxidant effects by suppressing 57.61% and 92.88% respectively of DPPH and ABTS radicals at 1000 µg/mL with total phenolic contents of 140.45 mg GAE/g. Vikil 20 suppressed the proliferation of PC-3 cells by reducing the number of viable cells to 49.5% while sparing the RAW, 264.7 cells. Further, Vikil 20 significantly suppressed both cellular migration and adhesion of prostate cancer cells. Finally, suppression of cellular migration and adhesion is associated with a reduction in TNF-α secretion by PC-3 cells. Taken together, Vikil 20 was found to possess significant antioxidant and anti-prostate cancer effects in vitro.


Antioxidants , Cell Movement , Cell Proliferation , Plant Extracts , Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Cell Proliferation/drug effects , PC-3 Cells , Antioxidants/pharmacology , Cell Movement/drug effects , Mice , Animals , RAW 264.7 Cells , Free Radicals/metabolism , Plant Extracts/pharmacology , Cell Adhesion/drug effects , Cell Line, Tumor , Tumor Necrosis Factor-alpha/metabolism , Phenols/pharmacology
13.
J Cell Mol Med ; 28(9): e18329, 2024 May.
Article En | MEDLINE | ID: mdl-38693863

Therapy failure with the tyrosine kinase inhibitor (TKI) sunitinib remains a great challenge in metastatic renal cell carcinoma (mRCC). Growing evidence indicates that the tumour subpopulation can enter a transient, non-mutagenic drug-tolerant state to endure the treatment underlying the minimal residual disease and tumour relapse. Drug tolerance to sunitinib remains largely unexplored in RCC. Here, we show that sunitinib-tolerant 786-O/S and Caki-2/S cells are induced by prolonged drug treatment showing reduced drug sensitivity, enhanced clonogenicity, and DNA synthesis. Sunitinib-tolerance developed via dynamic processes, including (i) engagement of c-MET and AXL pathways, (ii) alteration of stress-induced p38 kinase and pro-survival BCL-2 signalling, (iii) extensive actin remodelling, which was correlated with activation of focal adhesion proteins. Remarkably, the acute drug response in both sensitive and sunitinib-tolerant cell lines led to dramatic fine-tuning of the actin-cytoskeleton and boosted cellular migration and invasion, indicating that the drug-response might depend on cell state transition rather than pre-existing mutations. The drug-tolerant state was transiently acquired, as the cells resumed initial drug sensitivity after >10 passages under drug withdrawal, reinforcing the concept of dynamic regulation and phenotypic heterogeneity. Our study described molecular events contributing to the reversible switch into sunitinib-tolerance, providing possible novel therapeutic opportunities in RCC.


Carcinoma, Renal Cell , Cell Movement , Drug Resistance, Neoplasm , Kidney Neoplasms , Sunitinib , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Sunitinib/pharmacology , Sunitinib/therapeutic use , Cell Line, Tumor , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Cell Movement/drug effects , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Signal Transduction/drug effects , Proto-Oncogene Proteins c-met/metabolism , Proto-Oncogene Proteins c-met/genetics , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Axl Receptor Tyrosine Kinase , Pyrroles/pharmacology , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Cell Proliferation/drug effects , Indoles/pharmacology
14.
BMC Cancer ; 24(1): 566, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711004

BACKGROUND: Resveratrol has demonstrated its ability to regulate BRCA1 gene expression in breast cancer cells, and previous studies have established the binding of MBD proteins to BRCA1 gene promoter regions. However, the molecular mechanism underlying these interactions remains to be elucidated. The aimed to evaluate the impact of MBD proteins on the regulation of BRCA1, BRCA2, and p16 genes and their consequential effects on breast cancer cells. METHODS: Efficacy of resveratrol was assessed using the MTT assay. Binding interactions were investigated through EMSA, ChIP, & MeIP assay. Expression analyses of MBD genes and proteins were conducted using qRT-PCR and western blotting, respectively. Functional assays, including clonogenic, migratory, and sphere formation assays were used to assess cancer cells' colony-forming, metastatic, and tumor-forming abilities. The cytotoxicity of resveratrol on cancer cells was also tested using an apoptosis assay. RESULTS: The study determined an IC50 of 30µM for resveratrol. MBD proteins were found to bind to the BRCA1 gene promoter. Resveratrol exhibited regulatory effects on MBD gene expression, subsequently impacting BRCA1 gene expression and protein levels. Higher concentrations of resveratrol resulted in reduced colony and sphere formation, decreases migration of cancer cells, and an increases number of apoptotic cells in breast cancer cells. Impact Identification of MBD2-BRCA1 axis indicates their significant role in the induction of apoptosis and reduction of metastasis and proliferation in breast cancer cells. Further therapy can be designed to target these MBD proteins and resveratrol could be used along with other anticancer drugs to target breast cancer. CONCLUSIONS: In conclusion MBD2 protein interact to the BRCA1 gene promoter, and resveratrol modulates MBD2 gene expression, which in turn regulates BRCA1 gene expression, and inhibits cell proliferation, migration, and induces apoptosis in ER+, PR+ & Triple negative breast cancer cells.


BRCA1 Protein , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , Promoter Regions, Genetic , Resveratrol , Triple Negative Breast Neoplasms , Resveratrol/pharmacology , Resveratrol/therapeutic use , Humans , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Cell Line, Tumor , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Movement/drug effects , Receptors, Estrogen/metabolism , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use
15.
J Appl Oral Sci ; 32: e20230294, 2024.
Article En | MEDLINE | ID: mdl-38747782

OBJECTIVE: This study aims to develop a compound biomaterial to achieve effective soft tissue regeneration. METHODOLOGY: Compound hyaluronic acid (CHA) and liquid horizontal-platelet-rich fibrin (H-PRF) were mixed at a ratio of 1:1 to form a CHA-PRF gel. Human gingival fibroblasts (HGFs) were used in this study. The effect of CHA, H-PRF, and the CHA-PRF gel on cell viability was evaluated by CCK-8 assays. Then, the effect of CHA, H-PRF, and the CHA-PRF gel on collagen formation and deposition was evaluated by qRT‒PCR and immunofluorescence analysis. Finally, qRT‒PCR, immunofluorescence analysis, Transwell assays, and scratch wound-healing assays were performed to determine how CHA, H-PRF, and the CHA-PRF gel affect the migration of HGFs. RESULTS: The combination of CHA and H-PRF shortened the coagulation time of liquid H-PRF. Compared to the pure CHA and H-PRF group, the CHA-PRF group exhibited the highest cell proliferation at all time points, as shown by the CCK-8 assay. Col1a and FAK were expressed at the highest levels in the CHA-PRF group, as shown by qRT‒PCR. CHA and PRF could stimulate collagen formation and HGF migration, as observed by fluorescence microscopy analysis of COL1 and F-actin and Transwell and scratch healing assays. CONCLUSION: The CHA-PRF group exhibited greater potential to promote soft tissue regeneration by inducing cell proliferation, collagen synthesis, and migration in HGFs than the pure CHA or H-PRF group. CHA-PRF can serve as a great candidate for use alone or in combination with autografts in periodontal or peri-implant soft tissue regeneration.


Cell Movement , Cell Proliferation , Cell Survival , Fibroblasts , Gingiva , Hyaluronic Acid , Platelet-Rich Fibrin , Regeneration , Hyaluronic Acid/pharmacology , Humans , Fibroblasts/drug effects , Gingiva/drug effects , Gingiva/cytology , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Regeneration/drug effects , Time Factors , Cell Movement/drug effects , Reproducibility of Results , Fluorescent Antibody Technique , Real-Time Polymerase Chain Reaction , Collagen , Materials Testing , Wound Healing/drug effects , Biocompatible Materials/pharmacology , Collagen Type I/analysis
16.
Med Oncol ; 41(6): 152, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743193

Metastasis is the most devastating attribute of breast cancer (BC) that leads to high mortality. It is a complex process of tumor cell migration, invasion, and angiogenesis. In this study, we evaluated the effect of ERA on BC metastasis and BC progression in vivo. The transwell invasion/migration and wound healing assays showed that ERA treatment significantly reduced the invasion and migration of BC cell lines. The expression of mesenchymal (E-cadherin and N-cadherin), matrix metalloproteinases (MMP2, MMP9), and stemness markers (Oct3) were down-regulated by ERA. Furthermore, ERA down-regulated angiogenic chemokines (CXCL1/2/3, CXCL5, and CXCL12) expression in the highly metastatic MDA-MB-231 cell line. The clonogenic survival of BC cells was also reduced by ERA treatment. Strikingly, ERA prevented DMBA-induced tumor growth in Swiss albino mice as depicted by a high animal survival rate (84%) in the ERA group and histopathological analysis. Conclusively, this study revealed that ERA possesses anti-metastatic potential and also reduces the growth of BC in vivo. Moreover, the GC-MS data revealed the presence of biologically active compounds (Lupeol, Phytol, phytosterol) and some rare (9, 19-Cyclolanost) phyto metabolites in ERA extract. However, further studies are suggestive to identify and isolate the therapeutic agents from ERA to combat BC and metastasis.


Breast Neoplasms , Euphorbia , Plant Extracts , Animals , Female , Breast Neoplasms/pathology , Breast Neoplasms/drug therapy , Mice , Humans , Plant Extracts/pharmacology , Euphorbia/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Neoplasm Metastasis , Disease Progression
17.
CNS Neurosci Ther ; 30(5): e14749, 2024 05.
Article En | MEDLINE | ID: mdl-38739004

AIMS: A bone-invasive pituitary adenoma exhibits aggressive behavior, leading to a worse prognosis. We have found that TNF-α promotes bone invasion by facilitating the differentiation of osteoclasts, however, before bone-invasive pituitary adenoma invades bone tissue, it needs to penetrate the dura mater, and this mechanism is not yet clear. METHODS: We performed transcriptome microarrays on specimens of bone-invasive pituitary adenomas (BIPAs) and noninvasive pituitary adenomas (NIPAs) and conducted differential expressed gene analysis and enrichment analysis. We altered the expression of TNF-α through plasmids, then validated the effects of TNF-α on GH3 cells and verified the efficacy of the TNF-α inhibitor SPD304. Finally, the effects of TNF-α were validated in in vivo experiments. RESULTS: Pathway act work showed that the MAPK pathway was significantly implicated in the pathway network. The expression of TNF-α, MMP9, and p-p38 is higher in BIPAs than in NIPAs. Overexpression of TNF-α elevated the expression of MAPK pathway proteins and MMP9 in GH3 cells, as well as promoted proliferation, migration, and invasion of GH3 cells. Flow cytometry indicated that TNF-α overexpression increased the G2 phase ratio in GH3 cells and inhibited apoptosis. The expression of MMP9 was reduced after blocking the P38 MAPK pathway; overexpression of MMP9 promoted invasion of GH3 cells. In vivo experiments confirm that the TNF-α overexpression group has larger tumor volumes. SPD304 was able to suppress the effects caused by TNF-α overexpression. CONCLUSION: Bone-invasive pituitary adenoma secretes higher levels of TNF-α, which then acts on itself in an autocrine manner, activating the MAPK pathway and promoting the expression of MMP9, thereby accelerating the membrane invasion process. SPD304 significantly inhibits the effect of TNF-α and may be applied in the clinical treatment of bone-invasive pituitary adenoma.


Adenoma , MAP Kinase Signaling System , Matrix Metalloproteinase 9 , Neoplasm Invasiveness , Pituitary Neoplasms , Tumor Necrosis Factor-alpha , Tumor Necrosis Factor-alpha/metabolism , Pituitary Neoplasms/metabolism , Pituitary Neoplasms/pathology , Humans , Adenoma/pathology , Adenoma/metabolism , Animals , Matrix Metalloproteinase 9/metabolism , MAP Kinase Signaling System/physiology , MAP Kinase Signaling System/drug effects , Male , Cell Line, Tumor , Female , Mice , Mice, Nude , Autocrine Communication/physiology , Autocrine Communication/drug effects , Middle Aged , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Adult , Rats , Cell Movement/drug effects , Cell Movement/physiology , Signal Transduction/physiology , Signal Transduction/drug effects
18.
PLoS One ; 19(5): e0303154, 2024.
Article En | MEDLINE | ID: mdl-38739591

BACKGROUND: Flowable resin composites (FRC) are tooth-colored restorative materials that contain a lower filler particle content, and lower viscosity than their bulk counterparts, making them useful for specific clinical applications. Yet, their chemical makeup may impact the cellular population of the tooth pulp. This in-vitro study assessed the cytocompatibility and odontogenic differentiation capacity of dental pulp stem cells (DPSCs) in response to two recent FRC material extracts. METHODS: Extracts of the FRC Aura easyflow (AEF) and Polofil NHT Flow (PNF) were applied to DPSCs isolated from extracted human teeth. Cell viability of DPSCs was assessed using MTT assay on days 1, 3 and 7. Cell migration was assessed using the wound healing assay. DPSCs' capacity for osteo/odontogenic differentiation was assessed by measuring the degree of mineralization by Alizarin Red S staining, alkaline phosphatase enzyme (ALP) activity, and monitoring the expression of osteoprotegerin (OPG), RUNX Family Transcription Factor 2 (RUNX2), and the odontogenic marker dentin sialophosphoprotein (DSPP) by RT-PCR. Monomer release from the FRC was also assessed by High-performance liquid chromatography analysis (HPLC). RESULTS: DPSCs exposed to PNF extracts showed significantly higher cell viability, faster wound closure, and superior odontogenic differentiation. This was apparent through Alizarin Red staining of calcified nodules, elevated alkaline phosphatase activity, and increased expression of osteo/odontogenic markers. Moreover, HPLC analysis revealed a higher release of TEDGMA, UDMA, and BISGMA from AEF. CONCLUSIONS: PNF showed better cytocompatibility and enhancement of odontogenic differentiation than AEF.


Cell Differentiation , Composite Resins , Dental Pulp , Stem Cells , Dental Pulp/cytology , Dental Pulp/metabolism , Humans , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Cell Differentiation/drug effects , Composite Resins/chemistry , Composite Resins/pharmacology , Cell Survival/drug effects , Odontogenesis/drug effects , Cell Movement/drug effects , Cells, Cultured
20.
Sci Rep ; 14(1): 10958, 2024 05 13.
Article En | MEDLINE | ID: mdl-38740853

Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.


Apoptosis , Carcinoma, Squamous Cell , Cell Proliferation , Eugenol , Gingival Neoplasms , Humans , Eugenol/pharmacology , Eugenol/therapeutic use , Gingival Neoplasms/drug therapy , Gingival Neoplasms/pathology , Gingival Neoplasms/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Apoptosis/drug effects , Cell Movement/drug effects , Cell Cycle Checkpoints/drug effects , Chemotherapy, Adjuvant/methods
...